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Biochar has the potential to be an efficient carbon sink while providing strong co-benefits 

Biochar can sequester massive amounts of carbon in the soil for hundreds to thousands of years.1  

Pre-Columbian Amazonian Indians used it to enhance soil productivity and made it by 

smoldering agricultural waste.2  They called it “Terra Preta de Indio.”3  Its modern equivalent is 

being developed using pyrolysis to heat biomass in the absence of oxygen in kilns.4 

Modern biochar production can be combined with biofuel production in a process that is energy-

positive—producing 3-9 time more energy than invested, and carbon-negative—withdrawing 

CO2 from the atmosphere and rebuilding geological carbon sinks.
5  With temperature thresholds, 

or “tipping points”, as close as ten years away for abrupt and irreversible climate changes, 

including catastrophic sea-level rise,6 the need for carbon negative energy sources is paramount.7 

Biochar (also known as “agri-char”) is a high-carbon, fine-grained residue which can be 

produced either by smoldering biomass utilizing centuries-old techniques (i.e., covering burning 

biomass with soil and letting it smolder) or through modern pyrolysis processes.  Pyrolysis is the 

direct thermal decomposition of biomass in the absence of oxygen to obtain an array of solid 

(biochar), liquid (bio-oil) and gas (syngas) products.  The specific yield from the pyrolysis is 

dependent on process conditions, and can be optimized to produce either energy or biochar.8  

Even when optimized to produce char rather than energy, the energy produced per unit energy 

input is higher than for corn ethanol.9 

In addition to its potential for carbon sequestration, biochar has numerous co-benefits when 

added to soil.  It can prevent the leaching of nutrients out of the soil,10 increase the available 

nutrients for plant growth,11 increase water retention,12 and reduce the amount of fertilizer 

required.  Additionally, it has been shown to decrease N20 and CH4 emissions from soil, thus 

further reducing GHG emissions.13  Biochar can be utilized in many applications as a 

replacement for or coterminous strategy with other bio-energy production strategies.  One is 

switching from “slash-and-burn” to “slash-and-char” to prevent the rapid deforestation and 

subsequent degradation of soils. 
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“Biochar sequestration does not require a fundamental scientific advance and the underlying 

production technology is robust and simple, making it appropriate for many regions of the 

world.”14  Johannes Lehmann, of Cornell University, estimates that pyrolysis will be cost 

feasible when the cost of a CO2 ton reaches $37
15 (as of the end of June 2008, CO2 is trading at 

~$45/ton on the ECX) – so using pyrolysis for bio-energy production is feasible, even though it 

may be more expensive than fossil fuels at the moment.  

Pyrolysis of biomass as a carbon sink (biochar) 

Biochar can be used to sequester carbon on centurial or even millennial time scales.  Plant matter 

absorbs CO2 from the atmosphere while growing.  In the natural carbon cycle, plant matter 

decomposes rapidly after the plant dies, which emits CO2.  Instead of allowing the plant matter to 

decompose, pyrolysis can be used to sequester the carbon in a much more stable form.  Biochar 

thus removes circulating CO2 from the atmosphere and stores it in virtually permanent soil 

carbon pools, making it a truly carbon-negative process.  In places like the Rocky Mountains, 

where beetles have been killing of vast swathes of pine trees, the utilization of pyrolysis to char 

the trees instead of letting them decompose into the atmosphere would offset substantial amounts 

of CO2 emissions.  Although some organic matter is necessary for agricultural soil to maintain its 

productivity, much of the agricultural waste can be turned directly into biochar, bio-oil, and 

syngas.16  The use of pyrolysis also provides an opportunity for the processing of municipal 

waste into useful clean energy rather than increased problems with land space for storage.17 

Biochar is believed to have long mean residence times in the soil.  While the methods by which 

biochar mineralizes (turns into CO2 ) are not completely known,
18 evidence from soil samples in 

the Amazon shows large concentrations of black carbon (biochar) remaining after they were 

abandoned thousands of years ago.19  The amount of time the biochar will remain in the soil 

depends on the feedstock material, how charred the material is, the surface:volume ratio of the 

particles, and the conditions of the soil the biochar is placed in.20 Estimates for the residence time 

range from 100 to 10,000 yrs, with 5,000 being a common estimate.21  Lab experiments confirm 

a decrease in carbon mineralization with increasing temperature, so carefully controlled charring 

of plant matter can increase the soil residence time of the biochar C.22 

Under some circumstances, the addition of biochar to the soil has been found to accelerate the 

mineralization of the existing soil organic matter,23 but this would only reduce the net benefit 

gained by sequestering carbon in the soil by this method.  Furthermore, the suggested soil 

conditions for the integration of biochar are in heavily degraded tropical soils used for 

agriculture, not organic matter rich boreal forest soils (as tested in the above reference). 

Production of biochar 

The yield of products from pyrolysis varies heavily with temperature.  The lower the 

temperature, the more char is created per unit biomass.24  High temperature pyrolysis is also 

known as gasification, and produces primarily syngas from the biomass.25  The two main 
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methods of pyrolysis are “fast” pyrolysis and “slow” pyrolysis.  Fast pyrolysis yields 60% bio-

oil, 20% biochar, and 20% syngas, and can be done in seconds, whereas slow pyrolysis can be 

optimized to produce substantially more char (~50%), but takes on the order of hours to 

complete.  For typical inputs, the energy required to run a “fast” pyrolyzer is approximately 15% 

of the energy that it outputs.26  Modern pyrolysis plants can be run entirely off of the syngas 

created by the pyrolysis process and thus output 3-9 times the amount of energy required to 

run.27 

The ancient method for producing biochar as a soil additive was the “pit” or “trench” method, 

which created terra preta, or dark soil.28  While this method is still a potential to produce biochar 

in rural areas, it does not allow the harvest of either the bio-oil or syngas, and releases a large 

amount of CO2, BC (black carbon), and other GHGs (and potentially, toxins) into the air.  

Modern companies are producing commercial-scale systems to process agricultural waste, paper 

byproducts, and even municipal waste. 

There are three primary methods for deploying a pyrolysis system.  The first is a centralized 

system where all biomass in the region would be brought to a pyrolysis plant for processing.  A 

second system would effectively mean a lower-tech pyrolysis kiln for each farmer or small group 

of farmers.  A third system is a mobile system where a truck equipped with a pyrolyzer would be 

driven around to pyrolyze biomass.  It would be powered using the syngas stream, return the 

biochar to the earth, and transport the bio-oil to a refinery or storage site.  Whether a centralized 

system, a distributed system, or a mobile system is preferred is heavily dependent on the specific 

region.  The cost of transportation of the liquid and solid byproducts, the amount of material to 

be processed in a region, and the ability to feed directly into the power grid are all factors to be 

considered when deciding on a specific implementation. 

Unless crops are going to be dedicated to biochar production, the residue-to-product ratio (RPR) 

for the feedstock material is a useful gauge of the approximate amount of feedstock that can be 

obtained for pyrolysis after the primary product is harvested and the waste remains.  The amount 

of crop residue available to be used for pyrolysis can be determined by using the RPR, and the 

collection factor (the percent of the residue not used for other things).  For instance, Brazil 

harvests approximately 460Mt of sugar cane annually29, with an RPR of 0.30, and a collection 

factor (CF) of 0.70 for the sugar cane tops, which are normally burned on the field.30  This 

translates into approximately 100Mt of residue which can be pyrolyzed to create energy and soil 

additives annually.  Adding in the bagasse (sugar cane waste) (RPR=0.29 CF=1.0) which is 

currently burned inefficiently in boilers, raises the total to 230 Mt of pyrolysis feedstock just 

from sugar cane residues.  Some plant residue, however, must remain on the soil to avoid heavily 

increased costs and emissions from nitrogen fertilizers.31 

Co-benefits of pyrolysis 
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Biochar can be used as a soil amendment to increase plant growth yield,32 improve water quality, 

reduce soil emissions of GHGs, reduce leaching of nutrients, reduce soil acidity, and reduce 

irrigation and fertilizer requirements.33  These properties are very dependent on the properties of 

the biochar, 34 and may depend on regional conditions including soil type, condition (depleted or 

healthy), temperature, and humidity.35  Modest additions of biochar to soil were found to reduce 

N2O emissions by up to 80% and completely suppress methane emissions.
36 

Switching from slash-and-burn to slash-and-char techniques in Brazil can both decrease 

deforestation of the Amazon and increase the crop yield.  Under the current method of slash-and-

burn, only 3% of the carbon from the organic material is left in the soil.37  Switching to slash-

and-char can sequester up to 50% of the carbon in a highly stable form.38  Adding the biochar 

back into the soil rather than removing it all for energy production is necessary to avoid heavy 

increases in the cost and emissions from more required nitrogen fertilizers.39  Additionally, by 

improving the soil tilth, fertility, and productivity, the biochar enhanced soils can sustain 

agricultural production, whereas non-amended soils quickly become depleted of nutrients, and 

the fields are abandoned, leading to a continuous slash-and-burn cycle and the continued loss of 

tropical rainforest. 

Using pyrolysis to produce bio-energy also has the added benefit of not requiring infrastructure 

changes the way processing biomass for cellulosic ethanol does.  Additionally, the biochar 

produced can be applied by the currently used tillage machinery or equipment used to apply 

fertilizer.40  

Pyrolysis for the production of energy (Biochar, Bio-oil, Syngas) 

Bio-oil can be used as a replacement for numerous applications where fuel oil is used, including 

fueling space heaters, furnaces, and boilers.41  Additionally, it can be used to fuel some 

combustion turbines and reciprocating engines, and as a source to create several chemicals.42  If 

bio-oil is used without modification, care must be taken to prevent emissions of black carbon and 

other particulates.  Syngas and bio-oil can also be “upgraded” to transportation fuels like 

biodiesel and gasoline substitutes.43  If biochar is used for the production of energy rather than as 

a soil amendment, it can be directly substituted for any application that uses coal.  Pyrolysis also 

may be the most cost-effective way of producing electrical energy from biomaterial.44  Syngas 

can be burned directly, used as a fuel for gas engines and gas turbines, or potentially used in the 

production of methanol and hydrogen.45 

Bio-oil has a much higher energy density than the raw biomass material.46  Mobile pyrolysis 
units can be used to lower the costs of transportation of the biomass itself if the biochar is 
returned to the soil and the syngas stream is used to power the process.47  Bio-oil contains 
organic acids which are corrosive to steel containers, has a high water vapor content which is 
detrimental to ignition, and contains some biochar in the liquid which can block injectors.48
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enhancing ecosystem C sequestration, our results show that these effects can be partially offset by its capacity to 
stimulate loss of native soil C, at least for boreal forests.”) (internal citations omitted) (emphasis added). 
36 Lehmann - Bioenergy in the Black, supra note 5 at 384. (“In greenhouse experiments, NOx emissions were 
reduced by 80% and methane emissions were completely suppressed with biochar additions of 20 g kg-1 to a forage 
grass stand.”) 
37 Glaser, supra note 3 at 225 (“The published data average at about 3% charcoal formation of the original biomass 
C.”) 
38 Lehmann – Biochar sequestration in terrestrial ecosystems, supra note 19 at 407 (“If this woody aboveground 
biomass were converted into biochar by means of simple kiln techniques and applied to soil, more than 50% of this 
C would be sequestered in a highly stable form.”) 
39 Gaunt, supra note 3 at 4152 (“This results in increased crop yields in low-input agriculture and increased crop 
yield per unit of fertilizer applied (fertilizer efficiency) in high-input agriculture as well as reductions in off-site 
effects such as runoff, erosion, and gaseous losses.”) 
40 Lehmann, A handful of carbon, supra note 4 at 143. (“It can be mixed with manures or fertilizers and included in 
no-tillage methods, without the need for additional equipment.”)  
41 Badger, Phillip C.  and Peter Fransham, Use of mobile fast pyrolysis plants to densify biomass and reduce biomass 

handling costs—A preliminary assessment, 30 BIOMASS & BIOENERGY 321, 322 (2006) (“including fueling space 
heaters, furnaces, and boilers (including cofiring in utility boilers); and fueling certain combustion turbines and 
reciprocating engines, as well as serving as a source of several chemicals.”) 
42 Id. 
43 Laird, supra note 26 at 178. 
44 Bridgwater, A. V., A.J. Toft, and J.G. Brammer, A techno-economic comparison of power production by biomass 

fast pyrolysis with gasification and combustion, 6 RENEWABLE & SUSTAINABLE ENERGY REV. 181, 231 (“the fast 
pyrolysis and diesel engine system is clearly the most economic of the novel systems at scales up to 15 MWe”);  
45 McKendry, Peter, Energy production from biomass (part 2): conversion technologies, 83 BIORESOURCE TECH. 47, 
48-49 (2002).  
46 Badger, supra note 41 at 323. 
47 Id. at 322. 
48 Yaman, Serdar, Pyrolysis of biomass to produce fuels and chemical feedstocks, 45 ENERGY CONVERSION & MGMT 
651, 659 (2003). 
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